Molecular modeling of polymer composite-analyte interactions in electronic nose sensors.

نویسندگان

  • A V Shevade
  • M A Ryan
  • M L Homer
  • A M Manfreda
  • H Zhou
  • K S Manatt
چکیده

We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Tube Integrated Electronic Nose System on a Flexible Polymer Substrate

The fabrication of electronic devices, such as gas sensors on flexible polymer substrates, enables the use of electronics in applications where conventional devices on stiff substrates could not be used. We demonstrate the development of a new intra-tube electronic-nose (e-nose) gas sensor device with multiple sensors fabricated and integrated on a flexible substrate. For this purpose, we devel...

متن کامل

Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring.

An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomer...

متن کامل

Polymer sensors for nitroaromatic explosives detection

Several polymers have been used to detect nitroaromatic explosives by a variety of transduction schemes. Detection relies on both electronic and structural interactions between the sensing material and the analyte. Quenching of luminescent polymers by electron deficient nitroaromatic explosives, such as trinitrotoluene, may be monitored to detect explosives. Resistive sensing using carbon black...

متن کامل

Assessing the ability to predict human percepts of odor quality from the detector responses of a conducting polymer composite-based electronic nose

The responses of a conducting polymer composite `̀ electronic nose'' detector array were used to predict human perceptual descriptors of odor quality for a selected test set of analytes. The single-component odorants investigated in this work included molecules that are chemically quite distinct from each other, as well as molecules that are chemically similar to each other but which are perceiv...

متن کامل

Polymer-Based Micro-Sensor Paired Arrays for the Determination of Primary Alcohol Vapors

An artificial olfactory system (or “electronic nose”) has been developed to investigate the interactions between polymer-modified sensors with odorant vapors from the headspace of primary alcohol samples. Complementary pairs of polymer-coated quartz crystal microbalance sensors and polymer/carbon black-coated microresistance sensors have been used to produce a characteristic value for the odora...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Sensors and actuators. B, Chemical

دوره 93 1-3  شماره 

صفحات  -

تاریخ انتشار 2003